Periodicity and Quasi-periodicity for Super-integrable Hamiltonian Systems
نویسنده
چکیده
Classical trajectories are calculated for two Hamiltonian systems with ring shaped potentials. Both systems are super-integrable, but not maximally super-integrable, having four globally defined single-valued integrals of motion each. All finite trajectories are quasi-periodical; they become truly periodical if a com-mensurability condition is imposed on an angular momentum component. R ´ ESUMÉ Les trajectoires classiques sont calculées pour deux systèmes hamiltoniens avec des potentiels en forme d'anneau. Les deux systèmes considérés sont super-intégrables, mais pas de façon maximale, ayant chacun quatre intégrales de mouvement uni-valuées et définies globalement. Toutes les trajectoires finies sont quasi-périodiques. Elles deviennent périodiques si l'on impose une condition de commensurabilité sur l'une des composantes du moment angulaire.
منابع مشابه
Quasi{periodicity of Motions and Complete Integrability of Hamiltonian Systems
Consider a Hamiltonian system with d degrees of freedom whose motions are all linear on tori of some xed dimension n d; is such a system necessarily completely (or else non{commutatively) integrable? We show that the answer is aaermative under quite broad conditions, but not always, and we provide counterexamples.
متن کاملاثر تناوب بهرهبرداری سقز بر زادآوری طبیعی درختان بنه (مطالعه موردی: جنگلهای بنه استان کردستان، سنندج)
In order to evaluate the impacts of oleo-gum resin extraction periodicity on natural regeneration of wild pistachio (Pistacia atlantica subsp. kurdica), three different forest areas in Kurdistan province, west of Iran, were selected based on difference extraction periodicities (regular periodicity, irregular periodicity and without periodicity). Then homogenous unit maps in GIS produced, and on...
متن کاملA Super-Integrable Hierarchy and Its Super-Hamiltonian Structure
It has been an important and interesting topic in soliton theory for searching for new Lax integrable or Liouville integrable systems as many as possible such that they are associated with certain evolution equations with physical meaning. The simple and efficient method to obtain continuous or discrete integrable systems was proposed Tu. Ma developed it and called it Tu scheme. By taking advan...
متن کاملExtra invariants in Hamiltonian Systems
In this paper, we study the dynamics of physical systems when there are many invariants of motion that restrict the possible motion of the system. First we introduce the relevant concepts for the study of dynamical systems, starting from basic Newtonian physics and working up to general Hamiltonian systems. Then we study the behavior of integrable systems (the systems with what is normally the ...
متن کاملOn the nature of solutions of the difference equation $mathbf{x_{n+1}=x_{n}x_{n-3}-1}$
We investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers. In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004